
Data Integration

This notebook highlights the process of integrating data from four different data sources (Excel files) onto a master file. For
efficiency, the data manipulation and cleanup is done with Python. After the processing is done, a master Excel file is
exported.

Raw data files and table definitions can be found at https://www.kaggle.com/anikannal/solar-power-generation-data
(https://www.kaggle.com/anikannal/solar-power-generation-data)

Problem Breakdown

Customer would like to analize data on power generation from two solar power plants and their respective weather
sensor logs.
The information recides in four separate Excel workbooks (two power generation files and two weather sensor files.)
Customer requests:
-- Consolidate data into one workbook
-- Manipulate data to facilitate comprehensibility
---- Change Codes to easy-to-read labels
---- Create Code dictionary for future reference
-- Conduct basic data cleanup

Plant 1 Power Generation Data - Sample (Plant 2 file has the same structure and data formats)

https://www.kaggle.com/anikannal/solar-power-generation-data

Plant 2 Weather Senson Data (Plant 1 file has the same structure and data formats)

WORKFLOW:

1) Load Dependencies

In [1]: import pandas as pd
import numpy as np
import datetime as dt

2) Import source Excel files

In [2]: def import_xlx(file):
 '''import excel file into target dataframe'''
 dir = 'D:/Springboard/Projects/SolarPower/data/raw/'
 df = pd.read_excel(dir + file, dtype={'DATE_TIME':np.str}) #import dates as string a
nd manipulate in python
 return df

In [3]: p1 = import_xlx('Plant_1_Generation_Data.xlsx')
p2 = import_xlx('Plant_2_Generation_Data.xlsx')
w1 = import_xlx('Plant_1_Weather_Sensor_Data.xlsx')
w2 = import_xlx('Plant_2_Weather_Sensor_Data.xlsx')

3) Analyze structure and content of powerplant files

In [4]: p1.head(3)

Check to see if there are missing values anywhere in the dataset.

In [5]: p1.isnull().sum()

In [6]: #check for data type consistency
p1.info()

4) Perform data cleanup

Plant ID and Source Key appear to be categorical values. Let's see how many posible values each hold.

In [7]: print(p1.PLANT_ID.unique())

Out[4]:
DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD

0 15-05-2020 00:00 4135001 1BY6WEcLGh8j5v7 0.0 0.0 0.0 6259559.0

1 15-05-2020 00:00 4135001 1IF53ai7Xc0U56Y 0.0 0.0 0.0 6183645.0

2 15-05-2020 00:00 4135001 3PZuoBAID5Wc2HD 0.0 0.0 0.0 6987759.0

Out[5]: DATE_TIME 0
PLANT_ID 0
SOURCE_KEY 0
DC_POWER 0
AC_POWER 0
DAILY_YIELD 0
TOTAL_YIELD 0
dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 68778 entries, 0 to 68777
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 DATE_TIME 68778 non-null object
 1 PLANT_ID 68778 non-null int64
 2 SOURCE_KEY 68778 non-null object
 3 DC_POWER 68778 non-null float64
 4 AC_POWER 68778 non-null float64
 5 DAILY_YIELD 68778 non-null float64
 6 TOTAL_YIELD 68778 non-null float64
dtypes: float64(4), int64(1), object(2)
memory usage: 3.7+ MB

[4135001]

There is only one ID in this columns. For easier identification lets change the id to '1'.

In [8]: p1['PLANT_ID'] = '1'
coder = {}
coder[4135001] = 'PLANT ID: 1'

Check data in 'SOURCE_KEY' column.

In [9]: sources = p1.SOURCE_KEY.unique()
print(sources)
print()
print('There are '+ str(len(p1.SOURCE_KEY.unique())) + ' distinct values.')

There are 22 different values for the source column. These are hard to read. We are going to map this values to something
easier to read. Format will be 'P1_SRC_X' for Plant 1 SOURCE #.

We will store the key:value combination for later reference.

In []:

In [10]: #create dictionary to hold source key mapping
p1_source = {}
idx=1
for source in sources:
 p1_source[source] = 'P1_SRC_' + str(idx)
 idx += 1

In [11]: #replace old codes with new values
p1['SOURCE_KEY'] = p1['SOURCE_KEY'].replace(p1_source)

The DATE_TIME values are been treated as strings. Perform data cleanup to standardize format and make the column a
DATETIME type.

Separate DATES and TIMES into their own columns for easier manipulation, after clean-up bring back together into
DATE_TIME column. ** This is needed because some date entries in the file have inconsistent formats. Removing the time
components from them allow python logic to correctly identify and format the dates.

In [12]: p1['DATE'] = p1['DATE_TIME'].str.slice(0,10)
p1['TIME'] = p1['DATE_TIME'].str.slice(11,16)

['1BY6WEcLGh8j5v7' '1IF53ai7Xc0U56Y' '3PZuoBAID5Wc2HD' '7JYdWkrLSPkdwr4'
 'McdE0feGgRqW7Ca' 'VHMLBKoKgIrUVDU' 'WRmjgnKYAwPKWDb' 'ZnxXDlPa8U1GXgE'
 'ZoEaEvLYb1n2sOq' 'adLQvlD726eNBSB' 'bvBOhCH3iADSZry' 'iCRJl6heRkivqQ3'
 'ih0vzX44oOqAx2f' 'pkci93gMrogZuBj' 'rGa61gmuvPhdLxV' 'sjndEbLyjtCKgGv'
 'uHbuxQJl8lW7ozc' 'wCURE6d3bPkepu2' 'z9Y9gH1T5YWrNuG' 'zBIq5rxdHJRwDNY'
 'zVJPv84UY57bAof' 'YxYtjZvoooNbGkE']

There are 22 distinct values.

In [13]: p1.head(3)

In [14]: #Convert the Date column from string to date type
p1['DATE'] = pd.to_datetime(p1['DATE'])
p1.drop('DATE_TIME', axis = 1, inplace=True)

In [15]: # add seconds for time standardization
p1['TIME'] = p1['TIME'] + ':00'
convert str to time
p1['TIME'] = pd.to_datetime(p1['TIME'], format= '%H:%M:%S').dt.time
p1['DATE_TIME'] = ''

#Combine date + time into DATE_TIME column
for idx in range (len(p1)):
 p1.iloc[idx,8] = pd.datetime.combine(p1.iloc[idx,6],p1.iloc[idx,7])

Reorder columns
p1.drop(['DATE','TIME'], axis=1, inplace=True)
p1 = p1[['DATE_TIME', 'PLANT_ID', 'SOURCE_KEY', 'DC_POWER', 'AC_POWER', 'DAILY_YIELD',
'TOTAL_YIELD']]

In [16]: # Vizualize current status of dataset
p1.sample(5)

Out[13]:
DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD DATE TIM

0 15-05-2020
00:00 1 P1_SRC_1 0.0 0.0 0.0 6259559.0

15-
05-

2020
00:0

1 15-05-2020
00:00 1 P1_SRC_2 0.0 0.0 0.0 6183645.0

15-
05-

2020
00:0

2 15-05-2020
00:00 1 P1_SRC_3 0.0 0.0 0.0 6987759.0

15-
05-

2020
00:0

<ipython-input-15-588f2891d22f>:9: FutureWarning: The pandas.datetime class is deprecat
ed and will be removed from pandas in a future version. Import from datetime module ins
tead.
 p1.iloc[idx,8] = pd.datetime.combine(p1.iloc[idx,6],p1.iloc[idx,7])

Out[16]:
DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD

45176 2020-06-06
19:00:00 1 P1_SRC_3 0.000000 0.000000 6496.000000 7158982.000

54772 2020-11-06
08:15:00 1 P1_SRC_8 2913.857143 285.814286 258.428571 6724468.429

35861 2020-02-06
07:00:00 1 P1_SRC_21 1669.857143 163.400000 59.142857 7247825.143

14118 2020-05-22
11:00:00 1 P1_SRC_8 7082.857143 692.971429 2251.142857 6574115.143

38471 2020-03-06
13:00:00 1 P1_SRC_15 11547.428570 1127.485714 4329.142857 7253659.143

Power plant 1 dataset is ready.

Repeat steps above to process Power plant 2 file.

5) Analyze structure and content

In [17]: p2.head(3)

In [18]: p2.isnull().sum()

In [19]: p2.info()

6) Perform data cleanup

In [20]: print(p2.PLANT_ID.unique())

Out[17]:
DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD

0 2020-05-15
00:00:00 4136001 4UPUqMRk7TRMgml 0.0 0.0 9425.000000 2.429011e+06

1 2020-05-15
00:00:00 4136001 81aHJ1q11NBPMrL 0.0 0.0 0.000000 1.215279e+09

2 2020-05-15
00:00:00 4136001 9kRcWv60rDACzjR 0.0 0.0 3075.333333 2.247720e+09

Out[18]: DATE_TIME 0
PLANT_ID 0
SOURCE_KEY 0
DC_POWER 0
AC_POWER 0
DAILY_YIELD 0
TOTAL_YIELD 0
dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67698 entries, 0 to 67697
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 DATE_TIME 67698 non-null object
 1 PLANT_ID 67698 non-null int64
 2 SOURCE_KEY 67698 non-null object
 3 DC_POWER 67698 non-null float64
 4 AC_POWER 67698 non-null float64
 5 DAILY_YIELD 67698 non-null float64
 6 TOTAL_YIELD 67698 non-null float64
dtypes: float64(4), int64(1), object(2)
memory usage: 3.6+ MB

[4136001]

In [21]: p2['PLANT_ID'] = '2'
coder[4136001] = 'PLANT ID: 2'

In [22]: sources = p2.SOURCE_KEY.unique()
print(sources)
print('There are '+ str(len(p2.SOURCE_KEY.unique())) + ' values.')

In [23]: #create dictionary to hold source key mapping
p2_source = {}
idx=1
for source in sources:
 p2_source[source] = 'P2_SRC_' + str(idx)
 idx += 1

In [24]: p2['SOURCE_KEY'] = p2['SOURCE_KEY'].replace(p2_source)

In [25]: p2['DATE'] = p2['DATE_TIME'].str.slice(0,10)
p2['TIME'] = p2['DATE_TIME'].str.slice(11,16)

In [26]: p2['DATE'] = pd.to_datetime(p2['DATE'])
p2.drop('DATE_TIME', axis = 1, inplace=True)

In [27]: p2['TIME'] = p2['TIME'] + ':00'
p2['TIME'] = pd.to_datetime(p2['TIME'], format= '%H:%M:%S').dt.time
p2['DATE_TIME'] = ''
for idx in range (len(p2)):
 p2.iloc[idx,8] = pd.datetime.combine(p2.iloc[idx,6],p2.iloc[idx,7])

p2.drop(['DATE','TIME'], axis=1, inplace=True)
p2 = p2[['DATE_TIME', 'PLANT_ID', 'SOURCE_KEY', 'DC_POWER', 'AC_POWER', 'DAILY_YIELD',
'TOTAL_YIELD']]

['4UPUqMRk7TRMgml' '81aHJ1q11NBPMrL' '9kRcWv60rDACzjR' 'Et9kgGMDl729KT4'
 'IQ2d7wF4YD8zU1Q' 'LYwnQax7tkwH5Cb' 'LlT2YUhhzqhg5Sw' 'Mx2yZCDsyf6DPfv'
 'NgDl19wMapZy17u' 'PeE6FRyGXUgsRhN' 'Qf4GUc1pJu5T6c6' 'Quc1TzYxW2pYoWX'
 'V94E5Ben1TlhnDV' 'WcxssY2VbP4hApt' 'mqwcsP2rE7J0TFp' 'oZ35aAeoifZaQzV'
 'oZZkBaNadn6DNKz' 'q49J1IKaHRwDQnt' 'rrq4fwE8jgrTyWY' 'vOuJvMaM2sgwLmb'
 'xMbIugepa2P7lBB' 'xoJJ8DcxJEcupym']
There are 22 values.

<ipython-input-27-4fbbd9230d85>:5: FutureWarning: The pandas.datetime class is deprecat
ed and will be removed from pandas in a future version. Import from datetime module ins
tead.
 p2.iloc[idx,8] = pd.datetime.combine(p2.iloc[idx,6],p2.iloc[idx,7])

In [28]: p2.sample(5)

Both Power Plant Generation files are ready.

--

Process Weather Sensor files

6) Analyze structure and content

In [29]: w1.head(3)

Out[28]:
DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD

47837 2020-06-08
14:15:00 2 P2_SRC_6 0.000000 0.000000 1330.000000 1.795072e+09

32534 2020-06-01
07:45:00 2 P2_SRC_15 202.053333 198.093333 222.666667 5.937129e+08

24500 2020-05-28
06:00:00 2 P2_SRC_20 15.120000 14.593333 1.266667 2.305880e+06

61875 2020-06-15
05:45:00 2 P2_SRC_8 0.000000 0.000000 0.000000 2.670741e+06

14387 2020-05-22
09:45:00 2 P2_SRC_2 0.000000 0.000000 1605.000000 1.215316e+09

Out[29]:
DATE_TIME PLANT_ID SOURCE_KEY AMBIENT_TEMPERATURE MODULE_TEMPERATURE IRRADIAT

0 2020-05-15
00:00:00 4135001 HmiyD2TTLFNqkNe 25.184316 22.857507

1 2020-05-15
00:15:00 4135001 HmiyD2TTLFNqkNe 25.084589 22.761668

2 2020-05-15
00:30:00 4135001 HmiyD2TTLFNqkNe 24.935753 22.592306

In [30]: w1.info()

7) Perform data cleanup

Code for readeability

In [31]: w1.PLANT_ID.unique()

In [32]: w1['PLANT_ID'] = '1'

In [33]: w1['SOURCE_KEY'].unique()

In [34]: w1['SOURCE_KEY'] = 'WXS1'
coder['HmiyD2TTLFNqkNe'] = 'WXS1'

Process Data/Time data

In [35]: w1['DATE'] = w1['DATE_TIME'].str.slice(0,10)
w1['DATE'] = pd.to_datetime(w1['DATE'])
w1['TIME'] = w1['DATE_TIME'].str.slice(11,16)
w1['TIME'] = w1['TIME'] + ':00'
w1['TIME'] = pd.to_datetime(w1['TIME'], format= '%H:%M:%S').dt.time
w1.drop('DATE_TIME', axis=1, inplace=True)
w1['DATE_TIME'] = ''

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3182 entries, 0 to 3181
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 DATE_TIME 3182 non-null object
 1 PLANT_ID 3182 non-null int64
 2 SOURCE_KEY 3182 non-null object
 3 AMBIENT_TEMPERATURE 3182 non-null float64
 4 MODULE_TEMPERATURE 3182 non-null float64
 5 IRRADIATION 3182 non-null float64
dtypes: float64(3), int64(1), object(2)
memory usage: 149.3+ KB

Out[31]: array([4135001], dtype=int64)

Out[33]: array(['HmiyD2TTLFNqkNe'], dtype=object)

In [36]: for idx in range (len(w1)):
 w1.iloc[idx,7] = pd.datetime.combine(w1.iloc[idx,5],w1.iloc[idx,6])
w1.drop(['DATE','TIME'], axis=1, inplace=True)
w1= w1[['DATE_TIME', 'PLANT_ID', 'SOURCE_KEY', 'AMBIENT_TEMPERATURE', 'MODULE_TEMPERATUR
E', 'IRRADIATION']]
w1.head(3)

Work second weather file

8) Analyze structure and content

In [37]: w2.head(3)

In [38]: w2.info()

<ipython-input-36-f041425cb444>:2: FutureWarning: The pandas.datetime class is deprecat
ed and will be removed from pandas in a future version. Import from datetime module ins
tead.
 w1.iloc[idx,7] = pd.datetime.combine(w1.iloc[idx,5],w1.iloc[idx,6])

Out[36]:
DATE_TIME PLANT_ID SOURCE_KEY AMBIENT_TEMPERATURE MODULE_TEMPERATURE IRRADIATION

0 2020-05-15
00:00:00 1 WXS1 25.184316 22.857507 0.0

1 2020-05-15
00:15:00 1 WXS1 25.084589 22.761668 0.0

2 2020-05-15
00:30:00 1 WXS1 24.935753 22.592306 0.0

Out[37]:
DATE_TIME PLANT_ID SOURCE_KEY AMBIENT_TEMPERATURE MODULE_TEMPERATURE IRRADIATI

0 2020-05-15
00:00:00 4136001 iq8k7ZNt4Mwm3w0 27.004764 25.060789

1 2020-05-15
00:15:00 4136001 iq8k7ZNt4Mwm3w0 26.880811 24.421869

2 2020-05-15
00:30:00 4136001 iq8k7ZNt4Mwm3w0 26.682055 24.427290

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3259 entries, 0 to 3258
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 DATE_TIME 3259 non-null object
 1 PLANT_ID 3259 non-null int64
 2 SOURCE_KEY 3259 non-null object
 3 AMBIENT_TEMPERATURE 3259 non-null float64
 4 MODULE_TEMPERATURE 3259 non-null float64
 5 IRRADIATION 3259 non-null float64
dtypes: float64(3), int64(1), object(2)
memory usage: 152.9+ KB

9) Perform data cleanup

Code for redeability

In [39]: w2.PLANT_ID.unique()

In [40]: w2.SOURCE_KEY.unique()

In [41]: w2['PLANT_ID'] = '2'
w2['SOURCE_KEY'] = 'WXS2'
coder['iq8k7ZNt4Mwm3w0'] = 'WXS2'

Process Date/Time data

In [42]: w2['DATE'] = w2['DATE_TIME'].str.slice(0,10)
w2['DATE'] = pd.to_datetime(w2['DATE'])
w2['TIME'] = w2['DATE_TIME'].str.slice(11,16)
w2['TIME'] = w2['TIME'] + ':00'
w2['TIME'] = pd.to_datetime(w2['TIME'], format= '%H:%M:%S').dt.time
w2.drop('DATE_TIME', axis=1, inplace=True)
w2['DATE_TIME'] = ''

In [43]: for idx in range (len(w2)):
 w2.iloc[idx,7] = pd.datetime.combine(w2.iloc[idx,5], w2.iloc[idx,6])
w2.drop(['DATE','TIME'], axis=1, inplace=True)
w2= w2[['DATE_TIME', 'PLANT_ID', 'SOURCE_KEY', 'AMBIENT_TEMPERATURE', 'MODULE_TEMPERATUR
E', 'IRRADIATION']]
w2.head(3)

Merge datasets into Master File

Out[39]: array([4136001], dtype=int64)

Out[40]: array(['iq8k7ZNt4Mwm3w0'], dtype=object)

<ipython-input-43-399aca825677>:2: FutureWarning: The pandas.datetime class is deprecat
ed and will be removed from pandas in a future version. Import from datetime module ins
tead.
 w2.iloc[idx,7] = pd.datetime.combine(w2.iloc[idx,5], w2.iloc[idx,6])

Out[43]:
DATE_TIME PLANT_ID SOURCE_KEY AMBIENT_TEMPERATURE MODULE_TEMPERATURE IRRADIATION

0 2020-05-15
00:00:00 2 WXS2 27.004764 25.060789 0.0

1 2020-05-15
00:15:00 2 WXS2 26.880811 24.421869 0.0

2 2020-05-15
00:30:00 2 WXS2 26.682055 24.427290 0.0

10) Prepare dataset for merge

In [44]: # join powerplant datasets
df_power = pd.concat([p1,p2], ignore_index=True)
join wx sensor datasets
df_wx = pd.concat([w1,w2], ignore_index=True)

In [45]: # rename commun column name to avoid conflict
df_power.rename(columns={'SOURCE_KEY':'PLANT_SOURCE'}, inplace=True)

In [46]: # rename columns for redeability
df_wx.rename(columns={'SOURCE_KEY':'WX_SENSOR', 'AMBIENT_TEMPERATURE': 'AMBIENT_TEMP',
'MODULE_TEMPERATURE':'MODULE_TEMP'}, inplace=True)

11) Merge Datasets

In [47]: df = pd.merge(df_power, df_wx, how='left', left_on=['DATE_TIME', 'PLANT_ID'], right_on=[
'DATE_TIME', 'PLANT_ID'])

12) Conduct final cleanup on Master File

Limit Temperature and Irradiation values level of precision (rounding.)

In [48]: df['AMBIENT_TEMP'] = round(df['AMBIENT_TEMP'],4)
df['MODULE_TEMP'] = round(df['MODULE_TEMP'],4)
df['IRRADIATION'] = round(df['IRRADIATION'],6)
df['DC_POWER'] = round(df['DC_POWER'],4)
df['AC_POWER'] = round(df['AC_POWER'],4)
df['DAILY_YIELD'] = round(df['DAILY_YIELD'],4)
df['TOTAL_YIELD'] = round(df['TOTAL_YIELD'],4)
df

Export Master FIle

13) Create Lookup table of New and old codes for export

In [49]: code = {**p1_source, **p2_source}
code = {**code, **coder}

Out[48]:
DATE_TIME PLANT_ID PLANT_SOURCE DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD WX

0 2020-05-15
00:00:00 1 P1_SRC_1 0.0 0.0 0.0 6259559.0

1 2020-05-15
00:00:00 1 P1_SRC_2 0.0 0.0 0.0 6183645.0

2 2020-05-15
00:00:00 1 P1_SRC_3 0.0 0.0 0.0 6987759.0

3 2020-05-15
00:00:00 1 P1_SRC_4 0.0 0.0 0.0 7602960.0

4 2020-05-15
00:00:00 1 P1_SRC_5 0.0 0.0 0.0 7158964.0

...

136471 2020-06-17
23:45:00 2 P2_SRC_18 0.0 0.0 4157.0 520758.0

136472 2020-06-17
23:45:00 2 P2_SRC_19 0.0 0.0 3931.0 121131356.0

136473 2020-06-17
23:45:00 2 P2_SRC_20 0.0 0.0 4322.0 2427691.0

136474 2020-06-17
23:45:00 2 P2_SRC_21 0.0 0.0 4218.0 106896394.0

136475 2020-06-17
23:45:00 2 P2_SRC_22 0.0 0.0 4316.0 209335741.0

136476 rows × 11 columns

In [50]: code_df = pd.DataFrame.from_dict(code, orient='index', columns=['New_Code'])
code_df['Old_Code'] = code_df.index
code_df.reset_index(drop=True, inplace=True)
code_df.head()

14) Export merged master file to Excel Workbook

In [51]: file = 'D:/Springboard/Projects/SolarPower/data/final/Combined_Power_Generation.xlsx'
with pd.ExcelWriter(file, engine='openpyxl') as writer:
 df.to_excel(writer, sheet_name='Master')
 code_df.to_excel(writer, sheet_name='Code_Lookup')

Final Master File

Master worksheet

Out[50]:
New_Code Old_Code

0 P1_SRC_1 1BY6WEcLGh8j5v7

1 P1_SRC_2 1IF53ai7Xc0U56Y

2 P1_SRC_3 3PZuoBAID5Wc2HD

3 P1_SRC_4 7JYdWkrLSPkdwr4

4 P1_SRC_5 McdE0feGgRqW7Ca

Code Lookup Worksheet

